Motivational Interviewing to Improve Exercise Attitudes and Behavior: Implications for Antihypertensive Therapy

Brian E. Sandoval, M.A.
Stephanie C. Wood, Ph.D., MHA
Christopher A. Neumann, Ph.D.
Beverly Spray, Ph.D.

The School of Professional Psychology
at Forest Institute
Springfield, Missouri
Purpose of the Current Study:

- To determine how Motivational Interviewing (MI) impacts hypertension patients’ adherence to exercise recommendations in primary care.

- Specifically, the current study examines how MI influences:
 1. Exercise behaviors
 2. Behavior change factors
 - Stages of Change
 - Intrinsic Motivation
 - Self-Efficacy
Overview of Hypertension

- More than 73 million people in the U.S. have a diagnosis of hypertension (140/90 mm Hg) and over 1 billion worldwide (AHA, 2009)

- Hypertension is a primary or contributing cause of 319,000 deaths annually and is a risk factor for stroke, heart attack, and CHF which account for more than 50% of all deaths nationwide (Gatchel & Oordt, 2003)

- Total expenditures are estimated at $73 billion annually which is nearly twice the costs in 1999 (AHA, 2009)
Treatment Failure and Non-Adherence

- **Only 25%** of hypertension patients have well-controlled blood pressure despite an abundance of lifestyle and pharmacologic treatments available (JNC, 2004)

- **Non-adherence** is one of most common obstacles to treatment success, with 30% to 60% of patients NOT following recommendations (Baum et al., 1997)

- Among all antihypertensive therapies, physical **exercise** programs account for the **lowest levels of adherence**, with rates as low as 14% to 17% (Brodie & Inoue, 2005)

- However, exercise significantly reduces blood pressure in **monotherapy** (Bacon et al., 2004) and **combination therapy** (Villareal et al., 2006) while also leading to additional **CV risk reductions** (Reaven et al., 1996)
Motivational Interviewing to Improve Adherence

- Motivational Interviewing (MI) is “a directive, client-centered counseling style for eliciting behavior change by helping patients explore and resolve ambivalence” (Rollnick & Miller, 1995, p. 325)

- MI is well-researched and has been shown to have positive outcomes for alcohol, drugs, diet, and exercise (Burke et al., 2003; Dunn et al., 2001)

- Only 3 studies total have examined MI and exercise in a cardiovascular population, with only 1 study including patients whose primary diagnosis was hypertension (Woollard et al., 1995).

- Although understudied, these trials provide some support for MI to improve treatment adherence for a cardiovascular population (Brodie & Inoue, 2005; Brodie, Inoue, & Shaw, 2008; Woollard et al., 1995)
Purpose of Current Study

1) To determine if MI can impact exercise behavior change for patients with hypertension

(Goal: Improve adherence by increasing exercise behaviors)

Hypothesis:

Patients receiving MI would have better increases in exercise behavior compared to those receiving a standard recommendation.
Purpose of Current Study

2) To determine how MI influences behavior change factors for hypertension patients

(Goal: Improve exercise adherence by impacting change factors)

A) Stages of Change

B) Intrinsic Motivation

C) Self-Efficacy

Hypothesis:

Patients receiving a MI session will experience better gains in exercise change factors when compared to those receiving a standard recommendation
Methods

Participants
Recruited from outpatient primary health care clinic for low income and uninsured

Inclusion Criteria
- Age \geq 18 years
- Hypertension diagnosis (SBP \geq 140 mm Hg or DBP \geq 90 mm Hg)
- Medically Suitable for Exercise
- Available for 30 day follow-up appointment

Exclusion Criteria
- Age < 18 years
- No diagnosis of hypertension
- Contraindication or Inability to Exercise
- Patients leaving clinic or Unavailable for 30 day follow-up
Methods

Procedures

- Patients who met inclusion criteria were contacted by phone
- Those who agreed to participate were asked to arrive approximately 1 hour prior to their scheduled appointment
- After informed consent, patients were randomly assigned to MI Group or ST Group

MI Group
- Completed measures, received 30 minute MI session

ST Group
- Completed measures, received standard exercise recommendation and psychoeducational handout

- **ALL** patients were scheduled for 30 day follow-up to complete measures
Methods

Measures

- **Godin Leisure-Time Exercise Questionnaire** (LTEQ)
 (Godin & Shepard, 1985)

- **University of Rhode Island Change Assessment – Exercise 2** (URICA-E2)
 (Marcus et al., 1992; Reed, 1994)

- **Intrinsic Motivation Inventory** (IMI)
 (Buckworth et al., 2007)

- **Barriers Self-Efficacy Scale** (BARSE)
 (McAuley, 1992)
Results

Table 1

Participant Demographic Characteristics by Motivational Interviewing (MI) Group versus Standard Treatment (ST) Group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>MI Group</th>
<th>ST Group</th>
<th>Test Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>n</td>
<td>30</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>Age, years (mean ± SD)</td>
<td>50.8 ± 8.6</td>
<td>46.9 ± 10.8</td>
<td>2.4(^a)</td>
<td>.128</td>
</tr>
<tr>
<td>Gender n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>20 (66.7)</td>
<td>16 (55.2)</td>
<td>0.8(^b)</td>
<td>.366</td>
</tr>
<tr>
<td>Female</td>
<td>10 (33.3)</td>
<td>13 (44.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>24 (80.0)</td>
<td>23 (79.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>5 (16.7)</td>
<td>6 (20.7)</td>
<td></td>
<td>.126</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (3.3)</td>
<td>0 (0.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Based on F ratio. \(^b\)Based on chi-square. \(^c\)Based on Fisher’s exact test which does not yield a table value, only a probability.
Results

Table 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>MI Group</th>
<th>ST Group</th>
<th>(F)-value</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTEQ</td>
<td>(4.85 ± 0.26)</td>
<td>(2.38 ± 0.27)</td>
<td>42.8</td>
<td><.001*</td>
</tr>
</tbody>
</table>

Note. LTEQ is the Godin Leisure- Time Exercise Questionnaire.
Results

Exercise Behavior (LTEQ) Change
Pre to Post Intervention

![Chart showing exercise behavior changes](chart.png)
Results

Table 3

Participant Exercise Stage of Change (URICA-E2) Results for Motivational Interviewing (MI) Group versus Standard Treatment (ST) Group

<table>
<thead>
<tr>
<th>URICA-E2 Pre/Post Comparison</th>
<th>MI Group</th>
<th>ST Group</th>
<th>Test Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stages Changed</td>
<td>(1.43 ± 1.25)</td>
<td>(-.14 ± 1.48)</td>
<td>14.5<sup>a</sup></td>
<td><.001</td>
</tr>
</tbody>
</table>

Direction of Change

<table>
<thead>
<tr>
<th></th>
<th>MI Group</th>
<th>ST Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>21 (70.0)</td>
<td>8 (27.6)</td>
</tr>
<tr>
<td>Negative</td>
<td>1 (3.3)</td>
<td>9 (31.0)</td>
</tr>
<tr>
<td>Unchanged</td>
<td>8 (26.7)</td>
<td>12 (41.4)</td>
</tr>
</tbody>
</table>

^aBased on Kruskal-Wallis test.

Note. URICA-E2 is the University of Rhode Island Change Assessment – Exercise 2.
Results

Table 4
Least Squares Means and Standard Errors for Intrinsic Motivation (IMI) and Self-Efficacy (BARSE)

<table>
<thead>
<tr>
<th>Measures</th>
<th>MI Group</th>
<th>ST Group</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMI</td>
<td>(42.71 ± 2.50)</td>
<td>(27.82 ± 2.54)</td>
<td>17.4</td>
<td><.001*</td>
</tr>
<tr>
<td>BARSE</td>
<td>(71.69 ± 3.28)</td>
<td>(55.08 ± 3.34)</td>
<td>12.6</td>
<td><.001*</td>
</tr>
</tbody>
</table>

Note. IMI is the Intrinsic Motivation Inventory. BARSE is the Barriers Self-Efficacy Scale.
Discussion

It was Hypothesized:

Patients receiving MI would have better increases in exercise behavior compared to those receiving a standard recommendation.

- This hypothesis was CONFIRMED

- MI helped increase frequency and/or strenuousness of exercise behaviors according to LTEQ
 - Consistent with previous studies examining MI’s impact on exercise behaviors for CHF (Brodie & Inoue, 2005) and other chronic diseases (Ang et al., 2007; Bennett et al., 2007)

- MI facilitated exercise behavior increases regardless of initial activity level
Discussion

It was Hypothesized:

Patients receiving a MI session will experience better gains in exercise change factors when compared those receiving a standard recommendation.

- This hypothesis was also CONFIRMED.
- The MI Group had a mean increase of nearly 1.5 Stages of Change, while ST Group showed no mean change with a slight decrease.
- Post-intervention, the MI Group had significantly higher mean IMI and BARSE scores when compared to the ST Group.

- Results provide insight into how MI impacts the process of change.
- Addresses gap in literature - Few published trials have demonstrated how MI influences intrinsic motivation and self-efficacy.
Discussion

Limitations

- Small Sample Size (n = 59)
- Racially homogenous sample (80% White)
- Sample predominately middle-aged
- Short duration of follow-up to MI session
- Unequal time spent with MI vs. ST groups

Strengths

- Brief MI session likely adaptable to other primary care/hospital settings
- Low-income sample (greater barriers to adherence)
- Randomization produced homogenous groups for comparison
Discussion

Future Directions

- Replicate current study design with larger, more diverse sample
- Examine MI’s impact over long-term follow-up appointments
- Assess if MI increases adherence for other antihypertensive therapies
Discussion

Implications for Findings

- By demonstrating utility of one brief MI session may lead to increased utilization in primary care.

- Understanding how MI affects behavior change factors may help practitioners become more effective at delivering MI interventions.

- By improving exercise adherence, may rely less on pharmacologic therapy.

- Better adherence to hypertension treatment would lead to decreased costs to the patient and health care system as a whole.
References

References

