

Pre-pregnancy obesity, gestational weight gain and child Attention Deficit Hyperactivity Disorder symptoms

> Bernard F. Fuemmeler, PhD, MPH Associate Professor Community & Family Medicine

Overview

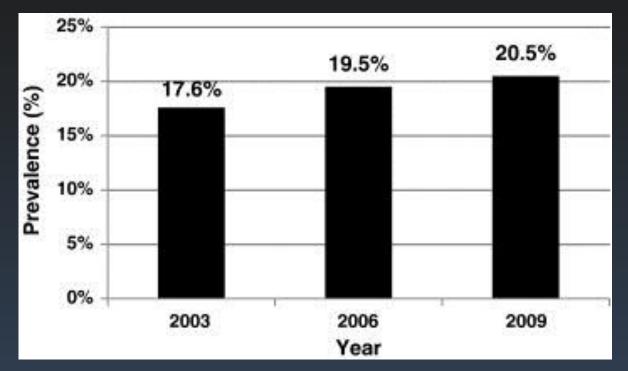
 Summarize extant research on pre-pregnancy obesity and child neurodevelopment

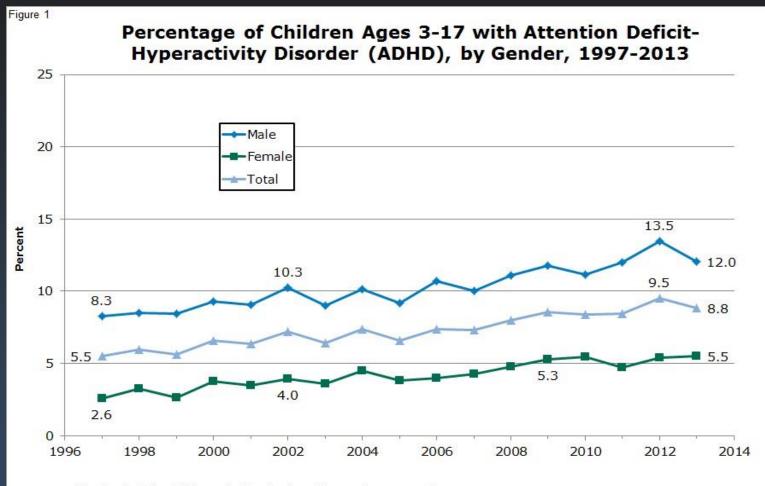
 Present data from Newborn Epigenetics Study (NEST)

Maternal Nutrition

- Maternal nutrition affects the prenatal environment and offspring physiology and biology
 - Dutch famine study has shown increased risk of diabetes, cardiovascular disease, stress and breast cancer associated with low birth weight
 - Low birth weight is also a risk factor for neurobehavioral problems
- A more common perturbation of maternal nutrition is over-nutrition
 - Excess bodyweight increases risk of perinatal complications
 - May also "program" a cascade of adverse metabolic and neurodevelopmental problems

Obesity and pregnancy

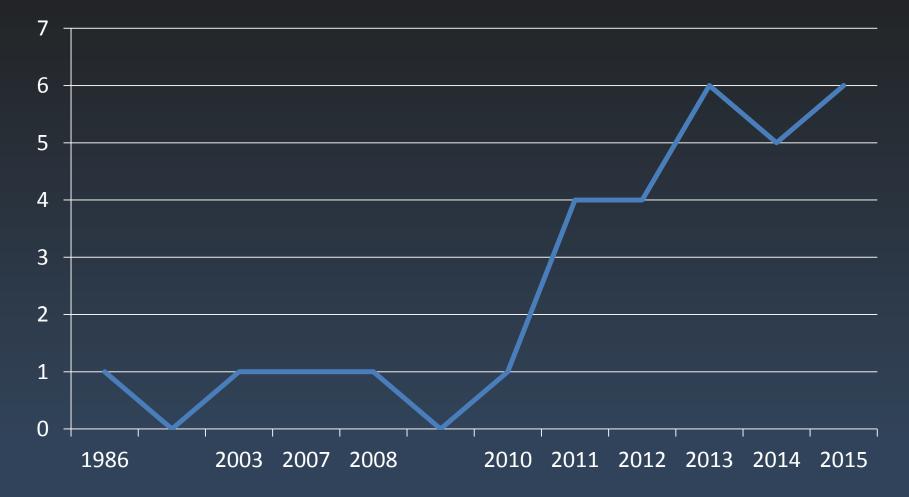



Fig. 1. Pre-pregnancy obesity (BMI \geq 30 kg/m2) prevalence among 20 US States, 2003, 2006, and 2009. P-trend &It; 0.001. Prevalence estimate is standardized to the sample's 2003 race–ethnicity and age distribution. Standard errors are: 2003—0.4, 2006—0.4, 2009—0...

S.C. Fisher, S.Y. Kim, A.J. Sharma, R. Rochat, B. Morrow

Is obesity still increasing among pregnant women? Pre-pregnancy obesity trends in 20 states, 2003–2009

Preventive Medicine, Volume 56, Issue 6, 2013, 372–378


Increasing rates of neurodevelopmental disorders

Source: Original analysis by Child Trends of National Health Interview Survey data 1997-2013.

Number of Publications on Pre-pregnancy Obesity and Neurodevelopment (30 publications since 1986)

The role of maternal obesity in the risk of neuropsychiatric disorders

Heidi M. Rivera¹, Kelly J. Christiansen² and Elinor L. Sullivan^{1,2*}

¹ Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA, ² Department of Biology, University of Portland, Portland, OR, USA TABLE 1 | Summary of human research demonstrating that maternal obesity increases the risk for mental health disorders.

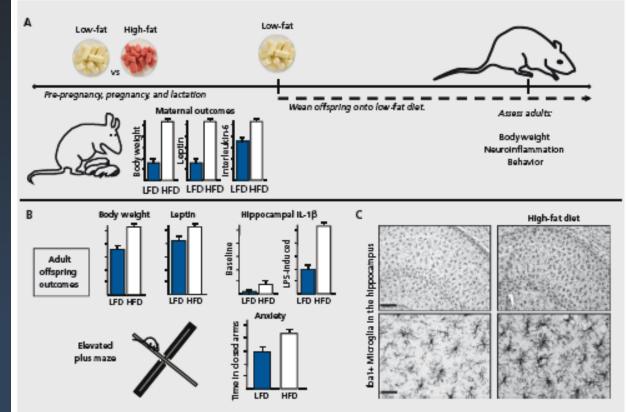
Child outcome	Maternal factor	References	Study design		
ADHD symptomology/Risk	Pre-pregnancy BMI	Rodriguez et al., 2008	Cohort		
		Rodriguez, 2010	Cohort		
		Chen et al., 2014	Cohort		
		Buss et al., 2012	Cohort		
	∱ gwg	Rodriguez et al., 2008	Cohort		
	Gestational diabetes & SES	Nomura et al., 2012	Cohort		
		Schmitt and Romanos, 2012	Survey; Cohort		
	Dietary intake of omega-3 fatty acids	Field, 2014	Case-control		
ASD risk/Severity of symptoms	Pre-pregnancy BMI	Krakowiak et al., 2012	Case-control		
		Reynolds et al., 2014	Cohort		
		Moss and Chugani, 2014	Cohort		
		Dodds et al., 2011	Cohort		
		Bilder et al., 2013	Case-control; Cohort		
	↑ gwg	Dodds et al., 2011	Cohort		
		Bilder et al., 2013	Case-control; Cohort		
	Diabetes, hypertension, or pre-eclampsia	Krakowiak et al., 2012	Case-control		
		Dodds et al., 2011	Cohort		
		Lyall et al., 2012	Cohort		
		Wallace et al., 2008	Cohort		
Anxiety/depression risk	Pre-pregnancy BMI	Rodriguez, 2010	Cohort		
		Van Lieshout et al., 2013	Cohort		
		Colman et al., 2012	Cohort		
Schizophrenia risk	Pre-pregnancy BMI	Jones et al., 1998	Cohort		
	 He programy carrier 	Schaefer et al., 2000	Cohort		
	↑ gwg	Kawai et al., 2004	Case-control		
	Pre-eclampsia/hypertension and diuretic treatment	Dalman et al., 1999	Cohort		
		Eide et al., 2013	Cohort		
		Sorensen et al., 2003	Cohort		
Food addiction	BMI 5 months post-delivery	Rising and Lifshitz, 2005	Cohort		
	↑ Intake of sweets during pregnancy	Brekke et al., 2007	Cohort		
↑ Anorexia nervosa/ Bulimia nervosa risk	BMI 6 months post-delivery Disordered eating	Stice et al., 1999	Cohort		
	↑ Intake of sweets during pregnancy	Lamerz et al., 2005	Survey		
Risk of cognitive impairments		Hinkle et al., 2012	Cohort		
		Tanda et al., 2013	Survey; Cohort		
		Neggers et al., 2003	Survey		
		Heikura et al., 2008	Cohort		
		Heikura et al., 2008	Conon		
		Brion et al., 2008	Cohort		

Abbreviations: ADHD, attention detict hyperactivity disorder; ASD, autism spectrum disorder; BMI, body mass index; GWG, gestational weight gain; SES, socioeconomic status.

Meta-Analysis (preliminary results)

Table 1

Children of mothers with above-average BMI exhibit more adverse neurocognitive outcomes


Study Name / Cohort	Outcomes	Odds	Lower	Upper	Odds ratio and 95% CI							
	within study	ratio	limit	limit	0.01	0.1	1.00	10.00	100.00			
Moss (2014), Early Childhood Longitudinal	1	0.87	0.36	2.09								
Heikura (2008), 1966 Northern Finland Birth	1	0.90	0.50	1.61								
Brion (2011), Avon Longitudinal	Combined	0.95	0.90	1.01								
Brion (2011), Generation R	Combined	1.00	0.91	1.10								
Heikura (2008),1986 Northern Finland Birth	Combined	1.01	0.56	1.83			_ _					
Jo (2015), Infant Feeding Practices	Combined	1.11	0.85	1.46			- +					
Gardner (2015), Stockholm Youth	1	1.24	1.14	1.35								
Suren (2014), Norwegian Mother and Child	1	1.29	0.99	1.69			-					
Rodriguez (2010), Swedish Pregnancy	Combined	1.36	1.22	1.51								
Rodriguez (2008), Nordic Network on ADHD, Finland	1	1.47	1.10	1.96			-					
Rodriguez (2008), Nordic Network on ADHD, Denmark	1	1.55	0.98	2.44			-∎-					
Overweight v. Normal Weight, Random Effects model		1.16	1.03	1.32			+					
Moss (2014), Early Childhood Longitudinal	1	0.67	0.27	1.68		- I -	_∎∔_					
Heikura (2008),1966 Northern Finland Birth	1	1.00	0.40	2.50			_ _					
Jo (2015), Infant Feeding Practices*	Combined	1.09	0.80	1.49			+					
Suren (2014), Norwegian Mother and Child	1	1.17	0.81	1.69			- 					
Antoniou (2014), Twins and Multiple Births Association Heritability	1	1.18	0.70	1.99								
Rodriguez (2010) Swedish Pregnancy	Combined	1.21	1.02	1.44								
Gardner (2015), Stockholm Youth	1	1.80	1.59	2.04								
Jo (2015), Infant Feeding Practices**	Combined	2.39	1.63	3.50				.				
Heikura (2008),1986 Northern Finland Birth	Combined	2.79	1.49	5.23			■	⊢				
Obese v. Normal Weight, Random Effects model		1.42	1.13	1.79			+					
Overweight and Obese v. Normal weight, Random Effects model		1.26	1.11	1.43			•					

*Obese I classification, **Obese II/III classification

Note. The test for heterogeneity was significant for each of the three comparisons (p < .001), indicating that the variability of odds ratios was greater than that which would be expected due to sampling error alone. All three comparisons used *adjusted* odds ratios that generally controlled for maternal-related variables (e.g., age, education), child-related variables (e.g., gender, birth weight) and/or heritable characteristics (e.g. parental ADHD symptoms, parental IQ). Measured outcomes represented any neurocognitive indicator reported for the study (e.g., diagnosis of autism, IQ, behavioral and emotional symptoms).

Maternal nutrition and offspring neurodevelopment

- Preclinical studies show that prenatal exposure to maternal obesity, weight gain and high fat diet alter body weight, brain development and offspring behavior.
- Pups born of heavier dams have elevated proinflammatory cytokine expression
- Pups are more likely to display behaviors indicative of emotional dysregulation and learning/memory deficits

Bilbo SD, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 2010;24:2104-2115.

THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY

Journal of Child Psychology and Psychiatry 51:2 (2010), pp 134-143

Maternal pre-pregnancy obesity and risk for inattention and negative emotionality in children

Alina Rodriguez^{1,2,3}

¹Department of Psychology, Uppsala University, Sweden; ²Dept of Epidemiology and Public Health, Lifecourse Epidemiology, Imperial College, London, UK; ³MRC Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London, UK

- Swedish population-based cohort (n=1714)
- Pre-pregnancy obesity was found to be associated with teacher ratings of inattention and emotional regulation difficulties at age 5 years

Purpose of Our Study

Determine the extent to which pre-pregnancy BMI, obesity and gestational weight gain are associated with ADHD symptoms and related behaviors at age 3 years.

Study sample: Newborn Epigenetic Study (NEST)

The Newborn Epigenetics STudy (NEST)

NEST seeks to improve our understanding of how environmental exposures during pregnancy and in the first few years of life influence the epigenome, birth weight, neurodevelopment, and early childhood growth.

Preconception, Prenatal, Peripartum and Postnatal (age 1-5 years) -Cigarette smoking & ETS -Nutrient Supplementation -Maternal weight and weight gain -Maternal mood -Stress

EPIGENETIC ALTERATIONS **Phenotypes**

-Birth Outcomes

-Neurodevelopment

-Early obesity

The Newborn Epigenetics STudy (NEST)

- > 2000 women were enrolled at or near first trimester between 2006-2011
- Data/samples include
 - ✓ Prenatal maternal blood
 - ✓ Chord blood
 - ✓ Prenatal and postnatal survey data on exposures (reported toxin, nutrition & health behaviors) through child's 3rd year of life.
 - ✓ Extensive medical records data
 - ✓ <u>ONGOING on a subset</u>: neurodevelopmental phenotyping around self-regulation, child weight, physical activity, diet and postnatal blood and saliva samples from children

NEST Self Regulation Study

- Mothers (n=400) completed a survey that included a set of standardized behavioral measures of self-regulation, child eating behaviors, and parenting
- Children were between the ages of 2-5 years of age (mean = 3 years)
- Measures:
 - Behavioral Assessment System for Children (BASC)
 - Behavior Rating Inventory of Executive Function (BRIEF)

Sample Characteristics

- 48% AA; 44% White
- 52% with college degree
- 21% overweight; 32% obese
- 60% gained more than the recommended amount
- Primarily term infants
- Increasing ADHD symptoms among women who with higher pre-pregnancy BMI

Table 1. Sample characteristics overall and mean BASC ADHD and BRIEF	GEC scores by sample characteristic
--	-------------------------------------

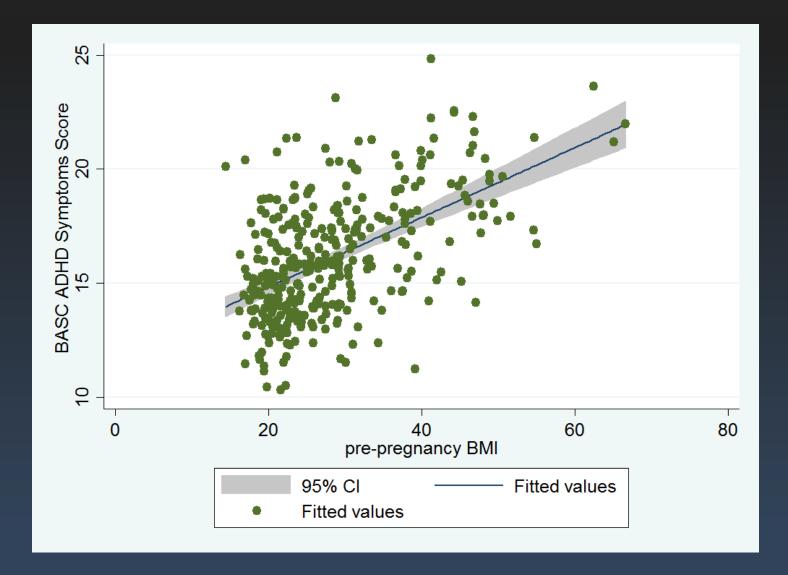
Tuble 1. Sumple characteristics overall and mean Divis	n	(%)		ADHD	BRIEF	
	п	(70)	1ean	(SD)	Mean	(SD)
Overall	340.0	(100)	8.08	(3.6)	92.88	(20.6)
Mother age at delivery, years		(***)	0.0 -	(0.1.)		(,
18-24	81	(24)	8.71	(3.9)	97.32	(20.6)
25-29	74	(22)	8.29	(4.1)	91.5	(22.0)
30-34	135	(40)	7.67	(3.1)	91.13	(20.0)
35 +	50	(15)	7.82	(3.2)	92.42	(19.4)
Maternal education level		()		()		()
Less than high school	92	(27)	8.85	(3.7)	99.62	(21.7)
High school and some college	72	(21)	8.87	(4.4)	96.53	(20.8)
College graduate	176	(52)	7.36	$(3.0)^{a}$	87.86	(18.5) ^a
Race	110	(0-)		(0.0)	0,100	(10.0)
White	151	(44)	7.94	(3.2)	89.54	(17.8)
Hispanic	8	(2)	9.43	(1.6)	98.88	(15.8)
Black	164	(48)	8.23	(4.0)	95.37	(22.6)
Other	17	(5)	7.28	(2.4)	95.65	(21.3)
Parity	17	(0)	/.20	(2.1)	20100	(21.5)
Primiparous	125	(37)	7.91	(3.3)	92.39	(18.7)
1 - 3	119	(35)	8.51	(3.9)	93.56	(10.7) (22.0)
≥4	96	(28)	7.77	(3.5)	92.66	(22.0)
Maternal ADHD Symptoms	20	(20)		(5.5)	2.00	(21.5)
Negative screen	301	(89)	7.86	(3.5)	91.86	(20.4)
Positive screen	39	(11)	9.68	(4.1) ^b	100.69	(20.2) ^b
Maternal smoking	57	(11)	2.00	(4.1)	100.07	(20.2)
Never smoke	225	(66)	7.68	(3.5)	90.51	(19.6)
Quit during pregnancy	88	(26)	8.73	(3.6)	96.43	(15.0) (21.2)
Smoking during pregnancy	27	(8)	9.22	(3.0) ^b	101	(23.1) ^b
Prepregnancy BMI	27	(0)	9.22	(4.0)	101	(23.1)
Underweight	22	(6)	6.70	(3.1)	80.59	(14.2)
Normal weight	138	(41)	7.76	(3.3)	91.66	(14.2) (19.3)
Overweight	71	(41) (21)	7.89	(3.6)	94.11	(19.3) (20.7)
Obese class I	40	(21) (12)	7.78	(3.0)	94.11	
	40 69			(2.7) (4.3) ^b		(15.4) (24.9) ^b
Obese class II and III	69	(20)	9.46	(4.5)	99.25	(24.9)
Weight gain during pregnancy, IOM category	57	(17)	0.12	(2,0)	04.22	(20, 2)
Less than recommended	57	(17)	9.13	(3.9)	94.23	(20.3)
Recommended	78	(23)	7.05	(3.0)	88.47	(18.4)
More than recommended	205	(60)	8.19	(3.6) ^b	94.18	(21.3)
Gestational age, weeks	24	(10)	0 (1	(2,2)	02.74	(17.0)
34 - 36	34	(10)	8.61	(3.3)	92.74	(17.8)
37 - 40	303	(89)	8.03	(3.6)	93	(20.9)
≥ 41	3	(1)	7.17	(1.8)	82.33	(21.5)
Birthweight (g)	27	(0)	0.10		01.05	(10.0)
<2500	27	(8)	8.13	(3.1)	94.26	(19.2)
2500 - 4200	298	(88)	8.17	(3.6)	93.27	(20.9)
\geq 4200	15	(4)	6.27	(2.5)	82.53	(12.4)
Child gender		/ -				(a
Male	180	(53)	8.31	(3.7)	92.52	(21.2)
Female	160	(47)	7.82	(3.4)	93.28	(19.8)
$a_{n} < 0.01$ and $h_{n} < 0.01$ for comparison from ANOVA						

 $a^{a} p < .001$ and b p < .01 for comparison from ANOVA.

Association between pre-pregnancy BMI and BASC ADHD and BRIEF Scales

	Continous BMI					Categorical BMI								
						Normal								
	Una	adjusted	A	Adjusted	Une	Underweight ((referent) Ov		Overweight		Obese class I		ese class II
	В	95% CI	В	95% CI	В	95% CI			В	95% CI	В	95% CI	В	95% CI
BASC ADHD Symptoms														
BASC HY+AP	0.16	(0.07, 0.25)	0.18	(0.08, 0.29)	-2.71	(-5.92, 0.49)			-0.13	(-2.22, 1.95)	-0.17	(-2.19, 1.84)	3.60	(0.93, 6.17)
BASC HY	0.08	0.02, 0.14)	0.09	(0.02, 0.17)	-1.21	(-3.64, 1.22)			-0.10	(-1.54, 1.35)	-0.13	(-1.48, 1.21)	1.73	(-0.20, 3.67)
BASC AP	0.08	(0.04, 0.12)	0.09	(0.05, 0.13)	-1.47	(-2.91, -0.03)			0.00	(-0.88, 0.89)	0.03	(-1.02, 1.08)	1.83	(0.80, 2.86)
BRIEF														
Global Executive Composite	0.40	(0.15, 0.65)	0.46	(0.18, 0.74)	-12.20	(-19.6, -4.72)			1.93	(-3.85,7.72)	-1.21	(-7.45, 5.04)	8.53	(1.14, 15.92)
Inhibition	0.10	(0.03, 0.17)	0.13	(0.05, 0.21)	-3.00	(-5.38,-0.62)			0.57	(-1.15, 2.30)	-0.60	(-2.33, 1.12)	2.25	(0.31, 4.19)
Shift Functions	0.07	(0.02, 0.11)	0.07	(0.02, 0.12)	-1.72	(-2.95, -0.48)			0.21	(-0.72, 1.15)	-0.51	(-1.70, 0.68)	1.06	(-0.20, 2.32)
Emotional Control	0.04	(-0.01, 0.08)	0.03	(-0.02, 0.09)	-1.24	(-2.94, 0.46)			-0.33	(-1.40, 0.74)	-0.87	(-2.03, 0.29)	0.68	(-0.71, 2.06)
Working Memory	0.13	(0.06, 0.20)	0.15	(0.07, 0.23)	-3.07	(-5.24, -0.91)			1.20	(-0.55, 2.95)	0.55	(-1.38, 2.48)	3.38	(1.18, 5.57)
Plan Organize	0.07	(0.02, 0.11)	0.08	(0.03, 0.13)	-2.65	(-3.95, -1.35)			0.30	(-0.72, 1.32)	0.22	(-1.01, 1.46)	1.21	(-0.04, 2.45)

 β =standardized beta; All models adjusted for parity, birthweight, child's age, gender, mom's age, race, education,


gestational weeks, smoking and mothers ADHD

^a model mutually adjusted for gestational weigh gain in addition to other covariates

^b model mutually adjusted for prepregnancy BMI in addtion to other covariates .

All models adjusted for parity, birthweight, child's age, gender, mom's age, race, education, gestational weeks, smoking and mothers ADHD

Standardized Beta for BASC HYAP = .24; Standardized Beta for GEC = .20

Regression line adjusted for gestational weight gain parity, birth weight, child's age, gender, mom's age, race, education, gestational weeks, smoking and mothers ADHD

Association between gestational weight gain and BASC ADHD and BRIEF Scales

		Continous	GWG			Categorical GWG (IOM)							
						Adequate							
	Unac	djusted	Adjusted		Less t	(referent)		More than adequate					
	В	95% CI	В	95% CI	В	95% CI			В	95% CI			
BASC ADHD Symptoms													
BASC HY+AP	-0.01	(-0.11, 0.09)	0.03	(-0.08, 0.13)	3.43	(0.93, 5.93)			1.71	(0.11, 3.32)			
BASC HY	-0.02	(-0.08, 0.05)	0.00	(-0.08, 0.07)	2.29	(0.54, 4.03)			0.94	(-0.18, 2.07)			
BASC AP			0.03	(-0.02, 0.08)	1.07	(-0.02, 2.15)			0.74	(0.08, 1.40)			
BRIEF													
Global Executive Composite	0.00	(-0.04, 0.05)	0.28	(0.02, 0.53)	2.10	(-4.70, 8.89)			4.23	(-0.74, 9.19)			
Inhibition	0.06	(-0.02, 0.14)	0.07	(-0.01, 0.15)	1.37	(-0.58, 3.31)			1.48	(0.06, 2.91)			
Shift Functions	0.01	(-0.03, 0.05)	0.04	(-0.01, 0.08)	0.23	(-0.92, 1.38)			0.56	(-0.30, 1.42)			
Emotional Control	0.03	(-0.02, 0.08)	0.04	(-0.02, 0.09)	0.65	(-0.72, 2.02)			0.61	(-0.32, 1.55)			
Working Memory	0.04	(-0.04, 0.11)	0.07	(0.00, 0.15)	0.22	(-1.78, 2.22)			0.80	(-0.68, 2.28)			
Plan Organize	0.04	(-0.00, 0.09)	0.06	(0.02, 0.11)	-0.53	(-1.77, 0.71)			0.62	(-0.31, 1.54)			

All models adjusted for parity, birthweight, child's age, gender, mom's age, race, education, gestational weeks, smoking and

^a model mutually adjusted for gestational weigh gain in addition to other covariates

^b model mutually adjusted for prepregnancy BMI in additon to other covariates .

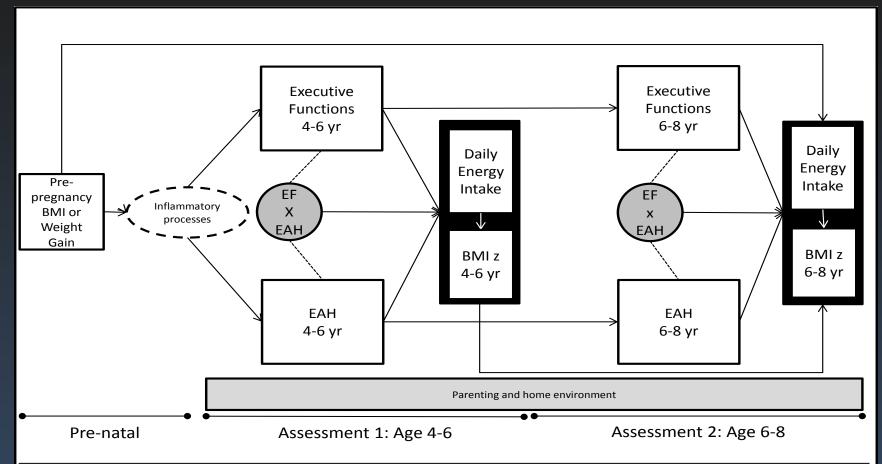
Standardized Beta for BASC GEC = 0.12

Conclusion

- Data support an association between prepregnancy BMI, gestational weight gain and ADHD-related symptoms at 3 years of age
- Both hyperactive and inattention symptoms were related to pre-pregnancy BMI
- Emotional regulation was not related to pre-pregnancy BMI
- Analysis control for mother's ADHD symptoms
- We replicated these analyses using propensity score matching, restricting analyses to children born 37+ weeks gestation or to women without gestational diabetes and results remained similar

Future Directions

THRIVING


Translating Health RIsks to understand Variability In Neurodevelopment Growth

THRIVING

Objectives

- Examine the extent to which maternal obesity related to individuals differences in appetite and executive functions and the degree to which these relate to risk for child obesity
- 2. Examine the extent to which proinflammatory cytokines mediated associations

THRIVING Model

Figure 3. Model guiding proposed work

Note: Circle indicates interaction between executive functions (EF) and Eating in the Absence of Hunger (EAH). Final model predicting change in BMI from 4-6 and 6-8 (or obesity at age 6-8) will control for maternal characteristics (race/ethnicity, SES, intelligence score, parenting behaviors, stress/depressive symptoms), pregnancy/birth characteristics (obstetric risk conditions, parity, birthweight, gestational weeks), and child characteristics (BMI z at 3-5 years, age at assessment, gender). Prenatal exposure to maternal BMI and cytokines levels will be examined as predisposing factors to variation in EAH, executive functions and obesity. Parenting and home environment factors will be evaluated as moderators.

THRIVING Measures

- Parent and teacher measures of selfregulation
- NIH toolbox to measure inhibitory control/attention, executive function, working memory, and language
- Children's gambling task to measure "hot executive" functioning
- Eating in the absence of hunger task

Collaborators and Funding

- Scott Kollins, PhD
- Victor Wang, PhD
- Cathrine Hoyo, PhD
- Sara Neelon, PhD
- Staci Bilbo, PhD
- Nancy Zucker, PhD
- Ed Iversen, PhD

THRIVING: NICHD - 1R01HD084487 NEST – Self Regulation: NIA - 1R21AG041048