Combat Exposure and Pain in Iraq and Afghanistan Veterans: The Role of Moderators and Mediators

Kathryn M. Godfrey, Melissa M. Buttner, Elizabeth Floto, James Pittman, Laurie Lindamer, and Niloofar Afari
Combat exposure (CE) in Veterans

- Up to 81% OEF/OIF/OND Veterans report at least one CE during deployment (Street et al., 2013)
- CE linked to poor physical health, including pain (Ramchand et al., 2015; Haskell et al., 2008)
- OEF/OIF/OND Veterans with CE have higher somatic symptoms and lower physical health functioning (Godfrey et al., 2015)

Mechanisms of the CE-pain link

- PTSD (Nilni et al., 2014)
- Depression (Morasco et al., 2013)
- Resilience
Role of gender

- Male Veterans have higher rates of CE (Street et al., 2013)
- Gender moderates CE-mental health (Polusny et al., 2014) and CE-pain (Driscoll et al., 2015)
- Increasing role of female service members in combat roles
- Gender differences in combat roles (Maguen et al., 2012)
Aims:
1. determine if Veterans with CE report higher pain intensity and interference
2. examine PTSD, depression, and resilience as parallel mediators of the CE-pain link
3. explore gender as a moderator of the significant mediated pathways
Sample: Iraq and Afghanistan Veterans enrolling for services at VA San Diego Healthcare System (N = 2,683)

Self-report measures collected via tablet or paper forms:

- **Combat exposure (CE):** endorsing CE or any of 10-15 combat experiences presented such as firing at the enemy, caring for wounded, receiving small arms fire
- **Pain intensity:** numerical rating scale 0 “no pain at all” - 10 “worst pain ever”
- **Pain interference:** 7 items from PHQ-15 (stomach pain, back pain, pain in arms/legs/joints, headaches, chest pain, pain or problems during sexual intercourse) (Nillni et al., 2014)
- **PTSD:** the PTSD Checklist – Civilian Version (PCL-C)
- **Depression:** Patient Health Questionnaire 9 (PHQ-9)
- **Resilience:** Connor-Davidson Resilience Scale 10-item (CD-RISC)
Statistical analysis:

- **Aim 1:** Linear regression analysis: CE predictor and pain intensity and pain interference as outcomes
- **Aim 2:** Mediation with PROCESS macro for SPSS (Hayes, 2013): PCL-C, PHQ-9, and CD-RISC scores as simultaneous mediators of the CE-pain relationships
- Non significant mediators were dropped from the model
- **Aim 3:** Moderated mediation with PROCESS macro for SPSS (Hayes, 2013): Gender as a moderator of the significant mediated-pain relationships
- All models controlled for age
Sociodemographics overall and by gender

<table>
<thead>
<tr>
<th></th>
<th>Total (N = 2381)</th>
<th>Men (n = 2007)</th>
<th>Women (n = 368)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: M (SD)</td>
<td>31.2 (8.3)</td>
<td>31.4 (8.5)*</td>
<td>29.8 (7.6)</td>
</tr>
<tr>
<td>Ethnicity/Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic: %</td>
<td>30.0</td>
<td>29.3</td>
<td>33.8</td>
</tr>
<tr>
<td>White: %</td>
<td>61.8</td>
<td>62.7</td>
<td>56.8</td>
</tr>
<tr>
<td>Black: %</td>
<td>16.9</td>
<td>16.1</td>
<td>21.6</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school: %</td>
<td>27.0</td>
<td>28.4**</td>
<td>19.4</td>
</tr>
<tr>
<td>Some college: %</td>
<td>47.6</td>
<td>47.4</td>
<td>48.4</td>
</tr>
<tr>
<td>Associate’s degree: %</td>
<td>10.2</td>
<td>9.7</td>
<td>13.1</td>
</tr>
<tr>
<td>4 year degree/Bachelor’s: %</td>
<td>10.7</td>
<td>10.4</td>
<td>12.6</td>
</tr>
<tr>
<td>Master’s degree or higher: %</td>
<td>4.4</td>
<td>4.1</td>
<td>6.6</td>
</tr>
<tr>
<td>Branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Army: %</td>
<td>13.6</td>
<td>14.0</td>
<td>11.8</td>
</tr>
<tr>
<td>Air Force: %</td>
<td>2.9</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Marines: %</td>
<td>31.3</td>
<td>33.8**</td>
<td>17.8</td>
</tr>
<tr>
<td>Navy: %</td>
<td>47.2</td>
<td>44.4**</td>
<td>62.5</td>
</tr>
</tbody>
</table>

*p < .001

** Standardized residual for chi-square test < -1.96 or > 1.96, which corresponds to *p < .05* for categorical variables with more than two groups.
Outcome variables overall and by CE and gender

<table>
<thead>
<tr>
<th>Total</th>
<th>Men (n = 2007)</th>
<th>Women (n = 368)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No CE</td>
<td>CE (62.6%)</td>
</tr>
<tr>
<td>Pain intensity, M (SD)</td>
<td>4.2 (2.7)</td>
<td>4.5 (2.7)</td>
</tr>
<tr>
<td>Pain interference, M (SD)</td>
<td>3.3 (2.3)</td>
<td>4.3 (2.5)</td>
</tr>
<tr>
<td>PHQ-9, M (SD)</td>
<td>4.7 (5.5)</td>
<td>8.1 (6.9)</td>
</tr>
<tr>
<td>PCL-C, M (SD)</td>
<td>5.4 (12.3)</td>
<td>37.1 (18.3)</td>
</tr>
<tr>
<td>CD-RISC, M (SD)</td>
<td>30.1 (7.6)</td>
<td>28.6 (7.8)</td>
</tr>
</tbody>
</table>
Results

Pain Measures by Combat Exposure Group

<table>
<thead>
<tr>
<th></th>
<th>No combat exposure</th>
<th>Combat exposure</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>n</td>
<td>F</td>
</tr>
<tr>
<td>Pain intensity</td>
<td>4.39</td>
<td>2.73</td>
<td>725</td>
<td>4.94</td>
<td>2.64</td>
<td>1091</td>
<td>21.94***</td>
</tr>
<tr>
<td>Pain interference</td>
<td>3.47</td>
<td>2.37</td>
<td>916</td>
<td>4.27</td>
<td>2.53</td>
<td>1357</td>
<td>57.90***</td>
</tr>
</tbody>
</table>

$p < .001$

Linear Models

- **Pain Intensity**
 - $B = 0.56$
 - $p < 0.001$

- **Pain Interference**
 - $B = 0.84$
 - $p < 0.001$
Mediation analysis for pain intensity

Combat Exposure → PTSD → Pain Intensity

- $B = 10.42$, $p < 0.001$
- $B = 3.01$, $p < 0.001$
- $B = 0.7$, $p < 0.001$

Combat Exposure → Depression → PTSD → Pain Intensity

- $B = 3.20$, $p < 0.001$
- $B = 0.12$, $p < 0.001$
- $B = 0.04$, $p < 0.001$

Mediation analysis for pain interference

Combat Exposure → PTSD → Pain Interference

- $B = 11.21$, $p < 0.001$
- $B = 0.12$, $p < 0.001$

Combat Exposure → Depression → PTSD → Pain Interference

- $B = 3.20$, $p < 0.001$
- $B = 0.12$, $p < 0.001$
- $B = 0.04$, $p < 0.001$
Moderated mediation analysis for pain intensity

Depression

- $B = 0.10, p = 0.03$

Gender

- $B = -0.04, p = 0.06$

PTSD

Combat Exposure

Pain Intensity

The graph shows the relationship between PHQ9 scores and pain intensity, with separate lines for women and men. The pain intensity increases with higher PHQ9 scores.
Strengths:
- Models that examined mediators and moderators simultaneously
- eScreening: research partnership with clinical activities enabled large clinically-relevant sample

Limitations:
- Cross-sectional study
 - Causation cannot be determined
 - Pre-deployment symptoms cannot be included in models
- Less conservative and more broad estimate of CE
Research implications:

- Understanding the development of pain in Veteran populations: PTSD and depression are part of the development of pain (Schnurr & Green, 2004; Morasco et al., 2013; Poundja et al., 2006)
- Unique role of gender in the CE-depression-pain association

Clinical implications:

- Veterans with CE may have increased pain as a result of mental health issues
- Combined mental health and pain treatments, especially for female Veterans who show a stronger depression-pain link
Summary

- CE is linked to higher pain intensity and interference through PTSD and depression pathways, providing insight into mechanisms of pain development
- Female Veterans are especially at risk for higher pain intensity with increasing depression

Future research:

- Longitudinal designs to understand causality
- Assess pre-deployment trauma and objective physical health outcomes
- Broader population endorsing a wider range of pain and MH issues
- Additional mediators—both risk and protective factors
Thank you!