≜UCL

Perceived life expectancy is associated with colorectal cancer screening uptake in England

Lindsay Kobayashi, Christian von Wagner, Jane Wardle

Health Behaviour Research Centre University College London, London, UK

Colorectal cancer (CRC)

- Colorectal cancer is the 3rd most common cancer in men and 2nd most common cancer in women worldwide (Torre et al., 2012)
- The UK has a publicly available CRC screening program
 - Home-based fecal occult blood test (FOBt) for men and women aged 60 to 74 years
 - No financial or transport barriers, small opportunity cost
- Screening uptake is ~50% in any given screening round
 - Uptake rates are similar in other countries with similar programs (Schreuders et al., 2015)

Perceived life expectancy (PLE)

- PLE = self-reported probability of living another X years
- Associated with mortality risk in older adults (Hurd & McGarry, 2002; Smith et al., 2001)
- Has been used in the economic literature, but rarely to predict future health-related behaviour (Hamermesh 1985; Carstensen, 2006; Wuebker 2012)
- Important: the American College of Physicians does not recommend cancer screening for people with a life expectancy <10 years, but this is not well known among the public

Objective

To investigate the prospective association between PLE and participation in FOBt screening

Methods

- English Longitudinal Study of Ageing (ELSA) (Steptoe et al., 2013)
 - Cohort study of English adults aged ≥50 years
 - Biennial in-person interviews from 2002 to present
 - Present analysis uses data from 2008/09 and 2012/13

NatCen Social Research that works for society

PLE Measurement

- Measured at baseline (2008/09)
- Study interview question:

"What are the chances that you will live to be age X or more?"

- If aged <65, X = 75 years
- If aged 66-69, *X* = 80 years
- If aged 70-74, *X* = 85 years

CRC screening uptake

- Measured at follow-up (2012/13)
- Study interview questions:

"Have you ever completed a home testing kit for bowel cancer screening?" "How long ago was your most recent test?" "Was this test part of the NHS Bowel Cancer Screening Programme?"

• Those with most recent test in 2010 or later coded as 'yes' for screening

Statistical analysis

- Logistic regression to predict the relationship between PLE at baseline (2008/09) and FOBt screening over the follow-up (2010 to 2012/13)
- Covariates:
 - Age
 - Sex
 - Educational attainment
 - Ethnicity
 - Marital status
 - Smoking status
 - Self-rated health

- Previous diagnosis of cancer, cardiovascular disease, hypertension
- Age of mother (currently or at death)
- Age of father (currently or at death)
- Numeracy

Sample

- N = 3975 men and women aged 60-74 years
- Mean age = 62.6 years (SD: 4.1 years)
- 55% female
- 22% with no qualifications; 29% with higher degree
- 98% 'white'
- 77% married

The PLE variable

Re-categorized as:

- Low (0-24%; reference)
- Low middle (25-49%)
- High middle (50-74%)
- High (75-100%)

• Focal point bias: people round to the nearest integer when responding on a continuous scale (Hurd, 2009; Wuebker, 2012; Hurd et al., 1998)

PLE and cancer screening

Table 1. FOBt screening according to PLE, n=3975	
Baseline characteristic	FOBt screening (yes) 2817 (71%)
Perceived life expectancy	
Low (0% to 24%)	126 (52%)
Lower middle (25% to 49%)	197 (63%)
Higher middle (50% to 74%)	1222 (70%)
High (75% to 100%)	1272 (76%)

Table 3. Logistic regression predicting FOBt screening, n=3975	
	Adjusted OR* (95% CI)
Perceived life expectancy	
Low (0% to 24%)	1.00 (ref)
Lower middle (25% to 49%)	1.32 (0.93, 1.88)
Higher middle (50% to 74%)	1.52 (1.14, 2.03)
High (75% to 100%)	1.74 (1.29, 2.34) 🗸 🗸

*Adjusted for age, sex, education, ethnicity, marital status, smoking status, age of mother and father (currently or at death), self-rated health, diagnoses of cardiovascular disease, cancer, or high blood pressure, and numeracy

Discussion & Future Work

- PLE is associated with future cancer screening uptake
 - Causality uncertain
 - Need better understanding of accuracy
- Half of people do not expect to live another 10-15 years participate in cancer screening
 - Why?
 - Potential for qualitative research
- Should the role of life expectancy be a part of public communication messages for screening in older adults?
 - Issues of utility, feasibility, and equity

Contact:

Dr. Lindsay Kobayashi I.kobayashi.12@ucl.ac.uk

References

- Carstensen LL. The influence of a sense of time on human development. *Science*. 2006; 312: 1913–1915.
- Hamermesh DS. Expectations, life expectancy, and economic behavior. Q J Econ. 1985; 100: 389–408.
- Hurd MD, McGarry K. The predictive validity of subjective probabilities of survival. *Econ J.* 2002; 112: 966–985.
- Hurd MD. Subjective probabilities in household surveys. *Annu Rev Econ*. 2009; 1: 543–562.
- Schreuders EH, Ruco A, Rabeneck L, et al. Colorectal cancer screening: a global overview of existing programmes. *Gut.* 2015; 64: 1637–49.
- Hurd M, McFadden D, Gan L. Subjective survival curves and life cycle behavior. In: Wise D, ed. Inquiries in the Economics of Aging. 1st ed. Chicago, IL: University of Chicago Press; 1998: 259–310.
- Smith VK, Taylor DH, Sloan FA. Longevity expectations and death: Can people predict their own demise? *Am Econ Rev.* 2001; 91: 1126–1134.
- Steptoe A, Breeze E, Banks J, Nazroo J. Cohort profile: The English Longitudinal Study of Ageing. *Int J Epidemiol.* 2013; 42: 1640–1648.
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics, 2012. CA Cancer J Clin. 2015; 65: 87–108.
- Wuebker A. Who gets a mammogram amongst European women aged 50-69 years? *Health Econ Rev.* 2012; 2: 6.

RRs predicting low PLE in older adults

- Low education: 1.16 (1.01, 1.34) for no qualifications vs. degree
- Older age: 1.62 (1.50, 1.76) per 10 year increase
- Older age of mother at death: 0.91 (0.88, 0.94) per 10 year increase
- Older age of father at death: 0.91 (0.88, 0.95) per 10 year increase
- Limiting long-standing illness: 1.26 (1.13, 1.40)
- Cancer: 1.39 (1.15, 1.68)
- **Diabetes**: 1.18 (1.04, 1.33)
- **Chronic lung condition**: 1.15 (1.00, 1.33)
- **Smoking**: 1.45 (1.27, 1.66)
- Low sense of control over life: 1.91 (1.44, 2.53) for Q1 vs. Q4
- Low life satisfaction: 1.52 (1.20, 1.93) for Q1 vs. Q4
- High perceived social status: 0.90 (0.87, 0.93) per 10 point increase